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Abstract—The octaethylporphyrin (OEP) tetramer connected with both diacetylene and vinylene linkages was synthesized by an
oxidative homo-coupling of the terminal acetylene of the vinylene-group connected OEP dimer. The electronic spectral and
electrochemical studies were performed, proving that the hybridized OEP tetramer remains the characteristic properties of the
vinylene-group connected OEP dimer more intensively as compared with the diacetylene-group connected OEP dimer. © 2002

Elsevier Science Ltd. All rights reserved.

In recent years, from various applicative viewpoints a
great deal of effort has been made for the construction
of well-defined, well-ordered and well-functioning
molecules based on the porphyrin nuclei.! The com-
pound 1, dimer of octaecthylporphyrin (OEP) connected
with the diacetylene linkage, is of importance in terms
of potential applicability to the function unit for opto-
electronic communication systems.> The compound 2,
dimer of OEP connected with the vinylene linkage, is
rather attractive as a model compound for the study of
the special pair in a photosynthesis reaction center.?
Each OEP dimer possesses the characteristic electronic
structure due to the strong interaction between the two
OEP rings through the respective linkages, coming to a
simple conclusion that the diacetylene linkage affects
Soret band more intensively, while the vinylene linkage
does Q band preferably. We have also been engaged in
the study of the one-dimensionally extended m-clec-
tronic conjugation system of OEP, proving that

oligomerization of the OEP ring with particular link-
ages enhances their electron-releasing ability and opti-
cal susceptibility efficiently.* In connection with the
peculiar features of these OEP dimers 1 and 2, we
designed the diacetylene- and vinylene-groups con-
nected OEP tetramer 3 to examine and figure out the
hybridism appearance of their properties as a function
unit of the electronic devices. Here, we wish to report
the synthesis of 3 and to describe its electronic proper-
ties, as compared with those of 1 and 2.

The title compound 3 was synthesized by a homo-cou-
pling of the terminal acetylene derived from the
vinylene-group connected OEP dimer 2, as shown in
Scheme 1. Vilsmeier reaction of OEP is well known to
proceed slowly to monoaldehyde even with 80-100
molar amounts of the reagent (POCl;-DMF) at 50—
55°C,*> under the same conditions of which compound
2 was found to bring a fairly complicated mixture
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Scheme 1.

containing mono- and dialdehydes, on the basis of 'H
NMR and MS spectral analyses. After several examina-
tions, the reaction of 2 only with 5-6 molar amounts of
the reagent at 45°C was carried out to afford a mixture
(3:1) of monoaldehydes 4° and 5° in ca. 80% yield,
which is separated by repeated column chromatography
on silica gel with hexane—chloroform. This result appar-
ently indicates that the vinylene linkage accelerates not
only the formylation of the OEP ring but also the
directional preference toward the isomer 4. Wittig reac-
tion of 4 using (CH,Br)PPh;-Br with n-BuLi afforded a
mixture (7-8:1) of the bromovinyl derivatives 6° and 7°
in ca. 40% vyield, together with a small amount of the
vinyl compound.” Successively, without separation to
each isomer, dehydrobromination of the mixture with
NaH-DMSO was carried out to afford the acetylene
derivative 8° in ca. 20% yield. Then, the homo-coupling
of 8 was carried out under the Eglinton conditions to
afford 3 in ca. 75% yield as black—purple crystalline
powder.®

The OEP tetramer 3 is fairly soluble in ordinary
organic solvents, as compared with the diacetylene-
group connected OEP dimer 1. The structure of 3 was
determined on the basis of MS and '"H NMR spectra,
as shown in Figs. 1 and 2. As is generally the case for
nickel complexes, the MS spectrum by the ESI tech-
nique exhibited a fairly simple fragmentation pattern
with peaks at around m/z 1280 assigned to the dica-
tionic species of 3, which is fully consistent with the
computer simulated pattern of its sodium-associated
species.” On the other hand, the "TH NMR spectrum of
3 exhibited little changes for all the corresponding
protons between before and after the coupling of 8,
except for the disappearance of the acetylenic proton (¢
4.51 ppm). Unexpectedly, it appears that compound 3
induces little structural reformation enough to perturb
the OEP ring current due to an extension of the m-clec-
tronic conjugation, retaining the respective structural
features of 1 and 2 to a great extent.>* It was also
noted that the vinylene linkage, which is thermodynam-
ically susceptible to isomerization,'® retains the trans
configuration the same as that of 2 under Vilsmeier
formylation and Eglinton coupling conditions.

6 —H

The electronic absorption spectrum of 3 is shown in
Fig. 3, together with those of 1 and 2. It is well known
that the Ni complex of OEP exhibits an absorption of
Soret band at around 390 nm and two weak absorp-
tions of Q band at 520-560 nm.!'! On the other hand,
the diacetylene-group connected OEP dimer 1 splits the
Soret band into three main absorptions at 430-490 nm
together with a bathochromic shift of Q band.? In
contrast with 1, the vinylene-group connected OEP
dimer 2 exhibits almost one broad absorption of Soret
band at around 420 nm with a shoulder and gives rise
to a long absorption tail of Q band over 800 nm.?
Although both diacetylene and vinylene linkages would
more or less display the characteristic effects on the
OEP tetramer 3, it shows that compound 3 remains the
spectral feature of 2 rather predominantly over that of
1, affording a broad Soret band at 400440 nm and a
very long absorption tail of Q band over 900 nm. This
result seems to be compatible with the fact that the
nickel complexes of the vinylene-group connected OEP
oligomers are liable to hold the m-electronic conjugation
planarities throughout the molecule even under the
sterically and electronically perturbed circumstances,
affording the long absorption tails up to the near
infrared region.'?
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Figure 1. Positive mode ESI-MS (MeOH:CH,Cl, =4:1) of 3.
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Figure 2. 'H NMR spectrum of 3 (400 MHz, CDCl,;, 25°C).

Cyclic voltammetry was performed to measure the oxi-
dation potentials of 3, affording the reversible voltam-
mogram with three redox waves (Table 1). The tetramer
3 was initially oxidized at 0.58 V as a measure of the
electron-releasing ability, which is almost comparable
to that of the vinylene-group connected OEP dimer 2.4
As has been deduced from the electronic absorption
spectral behavior,*!? the longer absorption tail of Q
band can be regarded as a sign of the higher electron-
releasing ability. In this respect, it is concluded that the
diacetylene linkage of 3 plays a role mostly in holding
the molecular geometry definitely with a slight affection
on the higher HOMO level of the vinylene-group con-
nected OEP dimer 2.

From the viewpoint of structure—property relationship,
further investigations of the OEP tetramer 3 are in
progress.

Table 1. Half-wave oxidation potentials of 1, 2, and 3
under the conditions of GC working electrode versus SCE
at a scan rate of 120 mV/s in dichloromethane

E'y (V) E? )5 (V) E3 )y (V)
1 0.86 1.01 1.35
0.62 0.70 1.23
3 0.58 0.74 1.30
ex 0%
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meso-H), 7.71 and 7.31 (1H each, d, J=15.2 Hz,
CH=CH), 3.87-3.21 (32H, m, CH,), 1.83-1.64 (36H, m,
CH,), 1.12 (6H, t, J=7.2 Hz, CHy), 098 (3H, t, J=7.2
Hz, CH;), 0.91 (3H, t, J=7.2 Hz, CH;). Compound 6:
9.46 (1H, s, meso-H), 9.44 (2H, s, meso-H), 9.34 (1H, d,
J=14.0 Hz, CH=CHBr), 9.26 (2H, s, meso-H), 7.67 and
748 (1H each, d, J=15.6 Hz, CH=CH), 5.66 (1H, d,
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(6H, t, J=7.2 Hz, CH;). Compound 7: 9.53 (1H, d,
J=38.0 Hz, CH=CHBr), 9.47 (1H, s, meso-H), 9.46 (2H, s,
meso-H), 9.25 (2H, s, meso-H), 7.76 and 7.51 (1H each,
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CH=CHBr), 3.89-3.14 (32H, m, CH,), 1.84-1.64 (36H,
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Figure 3. Electronic absorption spectra of 1 (------- ), 2 (= —), and 3 (—) in chloroform.
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CH,;). Compound 8: 9.46 (1H, s, meso-H), 9.44 (2H, s,
meso-H), 9.22 (2H, s, meso-H), 7.67 and 7.46 (1H each,
J=15.6 Hz, CH=CH), 4.51 (IH, s, C::CH), 4.18-4.09
(4H, br m, CH,), 3.87-3.60 (20H, M, CH,), 3.42-3.26
(8H, br m, CH,), 1.83-1.66 (36H, m, CH;), 1.07 (6H, t,
J=17.6 Hz, CH;), 0.99 (6H, t, J=7.0 Hz, CH;). The other
spectral and physical properties will be reported else-
where.
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